5.6 Continuous independence

Independence

Two discrete RVs \(X\) and \(Y\) are independent if

\[ p_{X, Y}(x, y) = p_X(x) \cdot p_{Y}(y), \;\; \text{for all $x$ and $y$.} \]

Two continuous RVs \(X\) and \(Y\) are independent if

\[ f_{X, Y}(x, y) = f_X(x) \cdot f_{Y}(y), \;\; \text{for all $x$ and $y$.} \]

Let \((X, Y)\) be a random point on the unit square.

Its joint PDF:

\[ \begin{aligned} f_{X, Y}(x, y) &= \begin{cases} 1, & \text{if $x, y \in [0, 1]$,} \\ 0, & \text{otherwise.} \end{cases} \end{aligned} \]

Let \((X, Y)\) be a random point on the unit square.

\[ \begin{aligned} f_{X, Y}(x, y) &= \begin{cases} 1, & \text{if $x, y \in [0, 1]$,} \\ 0, & \text{otherwise.} \end{cases} \end{aligned} \]

\[ \small{ \begin{aligned} f_{X}(x) &= \begin{cases} 1, & \text{if $x \in [0, 1]$,} \\ 0, & \text{otherwise.} \end{cases} \end{aligned} } \]

\[ \small{ \begin{aligned} f_{Y}(y) &= \begin{cases} 1, & \text{if $y \in [0, 1]$,} \\ 0, & \text{otherwise.} \end{cases} \end{aligned} } \]

\[ f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y) \]

\(X\) and \(Y\) are independent.