Two discrete RVs \(X\) and \(Y\) are independent if
\[ p_{X, Y}(x, y) = p_X(x) \cdot p_{Y}(y), \;\; \text{for all $x$ and $y$.} \]
Two continuous RVs \(X\) and \(Y\) are independent if
\[ f_{X, Y}(x, y) = f_X(x) \cdot f_{Y}(y), \;\; \text{for all $x$ and $y$.} \]
Let \((X, Y)\) be a random point on the unit square.
Its joint PDF:
\[ \begin{aligned} f_{X, Y}(x, y) &= \begin{cases} 1, & \text{if $x, y \in [0, 1]$,} \\ 0, & \text{otherwise.} \end{cases} \end{aligned} \]
Let \((X, Y)\) be a random point on the unit square.
\[ \begin{aligned} f_{X, Y}(x, y) &= \begin{cases} 1, & \text{if $x, y \in [0, 1]$,} \\ 0, & \text{otherwise.} \end{cases} \end{aligned} \]
\[ \small{ \begin{aligned} f_{X}(x) &= \begin{cases} 1, & \text{if $x \in [0, 1]$,} \\ 0, & \text{otherwise.} \end{cases} \end{aligned} } \]
\[ \small{ \begin{aligned} f_{Y}(y) &= \begin{cases} 1, & \text{if $y \in [0, 1]$,} \\ 0, & \text{otherwise.} \end{cases} \end{aligned} } \]
\[ f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y) \]
\(X\) and \(Y\) are independent.