Geometric RV: # of coin tosses needed to see the first heads
\[\small{p_X(k)=(1-p)^{k-1}p, \;\;\;\;\text{for } k=1, 2, \cdots }\]

Exponential:
the continuous counterpart of geometric

It is commonly used to model the time between two successive events (termed “interarrival time”).


Probability density function (PDF)
\[ f_X(x) = \begin{cases} ce^{-\lambda x}, & \text{if $x \geq 0$,} \\ 0, & \text{otherwise.} \end{cases} \]
where \(\lambda\) is the rate parameter (\(\lambda>0\)).
\[ \small{ f_X(x) = \begin{cases} ce^{-\lambda x}, & \text{if $x \geq 0$,} \\ 0, & \text{otherwise} \end{cases} } \]
The constant \(c\) is to ensure the normalization property.
\[ \small{ \begin{aligned} \int_{-\infty}^{+\infty}f_X(x)dx = \int_0^{+\infty}ce^{-\lambda x}dx &=c\big(-\frac{1}{\lambda}\big)e^{-\lambda x}\bigg|_0^{+\infty} \\ \\ &=-\frac{c}{\lambda}(0-1)\\ \\ &=\frac{c}{\lambda} \color{red}{= 1} \\ \end{aligned} } \]
\[ X \sim \text{expo}(\lambda) \]
\[ f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if $x \geq 0$,} \\ 0, & \text{otherwise.} \end{cases} \]
\[ f_X(0) = \lambda e^{-\lambda \cdot 0}=\lambda e^0 = \lambda \cdot 1 = \lambda \]



\[ \small{ f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if $x \geq 0$,} \\ 0, & \text{otherwise.} \end{cases} } \]
\[ \small{ \begin{aligned} \text{If } x \leq 0, \;\;\;\; F_X(x)&=\text{P}(X \leq x)=0 \\ \text{If } x > 0, \;\;\;\; F_X(x)&=\int_0^{x}\lambda e^{-\lambda x}dx=-e^{-\lambda x}\bigg|_0^x=1-e^{-\lambda x}\ \end{aligned} } \]


\[ \small{ F_X(x) = \begin{cases} 0, & \text{if $x \leq 0$,} \\ 1-e^{-\lambda x}, & \text{if $x > 0$}. \end{cases} } \]
\[ \small{ \text{P}(X > x) = 1-F_X(x)=1-\big(1-e^{-\lambda x}\big)=e^{-\lambda x} } \]


Given that \(X\) has already exceeded \(t\), the probability of \(X\) exceeding an additional \(s\) is simply the same as the probability of \(X\) exceeding \(s\).
\[ \text{P}(X>t+s|X>t)=\text{P}(X>s) \]
\[ \text{for all nonnegative values $t$ and $s$} \]
The past has no bearing on its future behavior.
\[ \small{ \begin{aligned} \text{Proof:}\;\;\;\;\text{P}(X>t+s|X>t)&=\frac{\text{P}\big((X>t+s) \cap (X>t)\big)}{\text{P}(X>t)} \\ \\ &=\frac{\text{P}(X>t+s)}{\text{P}(X>t)} \\ \\ &=\frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} \\ \\ &=e^{-\lambda s} = \text{P}(X>s) \\ \end{aligned} } \]
\[ X \sim \text{expo}(\lambda) \]
\[ f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if $x \geq 0$,} \\ 0, & \text{otherwise.} \end{cases} \]
\[ \text{E}[X]=\frac{1}{\lambda} \]

\[ \small{ \begin{aligned} \text{Proof:}\;\;\;\;\text{E}[X]&=\int_0^{+\infty} x\lambda e^{-\lambda x} dx \;\;\;\;\;\;\;\; \color{gray}{\leftarrow\text{Integration by parts}} \\ \\ &=x\big(-e^{-\lambda x}\big)\bigg|_0^{+\infty}-\int_0^{+\infty}1\cdot\big(-e^{-\lambda x}\big) dx \\ \\ &=(0-0)+\int_0^{+\infty}e^{-\lambda x} dx \\ &=-\frac{1}{\lambda}e^{-\lambda x}\bigg|_0^{+\infty} =0-\big(-\frac{1}{\lambda}\big)\cdot 1 =\frac{1}{\lambda} \\ \end{aligned} } \]
\[ X \sim \text{expo}(\lambda) \]
\[ \text{var}(X)=\sigma^2=\frac{1}{\lambda^2} \]
Standard deviation: \[ \sigma =\sqrt{\sigma^2}=\frac{1}{\lambda} \]
\[ \small{ \begin{aligned} \text{Proof:}\;\;\;\;\text{E}[X^2]&=\int_0^{+\infty} x^2\lambda e^{-\lambda x} dx \;\; \color{gray}{\leftarrow\text{Integration by parts}} \\ &=x^2\big(-e^{-\lambda x}\big)\bigg|_0^{+\infty}-\int_0^{+\infty}2x\cdot\big(-e^{-\lambda x}\big) dx \\ &=(0-0)+2\int_0^{+\infty}xe^{-\lambda x} dx \\ &=\frac{2}{\lambda}\int_0^{+\infty}x\lambda e^{-\lambda x} dx \\ &=\frac{2}{\lambda}\cdot\text{E}[X] =\frac{2}{\lambda}\cdot\frac{1}{\lambda}=\frac{2}{\lambda^2} \\ \end{aligned} } \]
Apply the shortcut formula for calculating the variance.
\[ \small{ \begin{aligned} \text{var}(X)&=\text{E}[X^2]-\big(\text{E}[X]\big)^2 \\ \\ &=\frac{2}{\lambda^2}-\big(\frac{1}{\lambda}\big)^2 \\ \\ &=\frac{1}{\lambda^2} \end{aligned} } \]
\[ \small{ f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if $x \geq 0$,} \\\ 0, & \text{otherwise.} \end{cases} } \]
\(\lambda\) is the rate parameter (e.g, 2 emails per hour)
\[ \small{ \text{E}[X]=\frac{1}{\lambda}; \;\; \text{var}(X)=\frac{1}{\lambda^2} } \]
We can replace \(\lambda\) with \(1/\beta\).
\[ \small{ f_X(x) = \begin{cases} 1/\beta \cdot e^{-\frac{x}{\beta}}, & \text{if $x \geq 0$,} \\ 0, & \text{otherwise.} \end{cases} } \]
\(\beta\) is the mean parameter (e.g, 0.5 hours between emails)
\[ \small{ \text{E}[X]=\beta; \;\; \text{var}(X)=\beta^2 } \]
These are two “parameterizations” of the distribution.