2.2 Set operations

Union of two events A and B

The event consisting of all outcomes that are in either A or B.

Notation: \(A \cup B\)  (Reads: A union B)

Roll a six-sided die 🎲

\[ \begin{aligned} A &= \{ 5, 6 \} \\ \\ B &= \{ 1, 3, 5 \} \\ \\ A \cup B &= \\ \end{aligned} \]

Intersection of two events A and B

The event consisting of all outcomes that are in both A and B.

Notation: \(A \cap B\)  (Reads: A intersect B)

Roll a six-sided die 🎲

\[ \begin{aligned} A &= \{ 5, 6 \} \\ \\ B &= \{ 1, 3, 5 \} \\ \\ A \cap B &= \end{aligned} \]

Commutative property

\[ a + b = b + a \]

\[ a \times b = b \times a \]


\[ A \cup B = B \cup A \]

\[ A \cap B = B \cap A \]

Associative property

\[ (a + b) + c = a + (b + c) \]

\[ (a \times b) \times c = a \times (b \times c) \]


\[ (A \cup B) \cup C = A \cup (B \cup C) \]

\[ (A \cap B) \cap C = A \cap (B \cap C) \]

Distributive property

\[ (a + b) \times c = (a \times c) + (b \times c) \]


\[ (A \cup B) \cap C = (A \cap C) \cup (B \cap C) \]

\[ (A \cap B) \cup C = (A \cup C) \cap (B \cup C) \]

Mutually exclusive events

Null event \(\Phi\): the event consisting of no outcomes.

\(A\) and \(B\) are mutually exclusive (or disjoint) events if they do not share any outcome, or simply

\[A \cap B=\Phi\]

Roll a six-sided die 🎲

\[ \begin{aligned} A &= \{ 1, 3, 5\} \text{ (odd numbers)} \\ B &= \{ 2, 4, 6 \} \text{ (even numbers)} \\ A \cap B &= \Phi \\ \end{aligned} \]

Complement of an event A

The set of all outcomes in \(\Omega\) that are not in A.

Notation: \(A^c\)  (Reads: A complement)

By definition,

\[A \cap A^c = \Phi\]

\[A \cup A^c = \Omega\]

Roll a six-sided die 🎲

\[ \begin{aligned} A &= \{ 5, 6 \} \\ A^c &= \\ \end{aligned} \]

Subset

An event A is a subset of an event B if all outcomes in A are also outcomes in B.

Notation: \(A \subseteq B\)

Roll a six-sided die 🎲

\[ \begin{aligned} A &= \{ 1, 3, 5\} \text{ (odd numbers)} \\ \\ B &= \{ 1, 2, 3, 4, 5 \} \text{ (less than 6)} \\ \\ A &\subseteq B \\ \end{aligned} \]

Venn diagram

What is the red region in each Venn diagram?

\(A\) \(B\) \(\Omega\) \(A\) \(B\) \(\Omega\) \(A\) \(B\) \(\Omega\)
\(A\) \(B\) \(\Omega\) \(A\) \(B\) \(\Omega\) \(A\) \(B\) \(\Omega\)

De Morgan’s laws (I)

\(A\) \(B\) \(\Omega\) \(A\) \(B\) \(\Omega\) \(A\) \(B\) \(\Omega\)

\[ (A \cup B)^c = A^c \cap B^c \]

De Morgan’s laws (II)

\(A\) \(B\) \(\Omega\) \(A\) \(B\) \(\Omega\) \(A\) \(B\) \(\Omega\)

\[ (A \cap B)^c = A^c \cup B^c \]

Venn diagram

\[ A \cap B = \Phi \]

\(A\) \(B\) \(\Omega\)

Venn diagram

\[ A \subseteq B \]

\(A\) \(B\) \(\Omega\)